Appendix-LXIII Resolution No. 18 [18-1(18-1-3)]

UNIVERSITY OF DELHI

(i) PHYSICS COURSES IN ANALYTICAL CHEMISTRY and

(ii) PHYSICS COURSES IN INDUSTRIAL CHEMISTRY

(SEMESTER-I)

based on

Undergraduate Curriculum Framework 2022 (UGCF) (Effective from Academic Year 2022-23)

University of Delhi

<u>Semester –I</u> <u>DSCs:-</u>

Course Title	Nature of the Course	Total Credits	Components			Eligibility	Contents of the
			L	Т	Р	Criteria/ Prerequisite	course and references may be seen at
Mechanics	DSC-1	4	2	0	2		Annexure – I
Wave and Optics	DSC-2	4	2	0	2		(Not Available)
Thermal Physics and Statistical Mechanics	DSC-3	4	2	0	2		(Not Available)

GE-1: Pool A (Pool for Odd Semester)

Course Title	Nature of	Total	Components			Eligibility	Contents of the
	the	Credits	L	Т	Р	Criteria/	course and
	Course					Prerequisite	references may be
							seen at
Mechanics	Physics	4	3	0	1		
	GE-01						
Mathematical	Physics	4	3	1	0		
Physics	GE-02						
Waves and	Physics	4	3	0	1		
Optics	GE-03						
Introduction to	Physics	4	2	0	2		Same Annexures
Electronics	GE-04						as GE Courses of
Solid State	Physics	4	3	1	0		B.Sc. (H) Physics
Physics	GE-05						
Introductory	Physics	4	3	1	0		
Astronomy	GE-06						
Biological	Physics	4	3	1	0		
Physics	GE-07						
Numerical	Physics	4	2	0	2		
Analysis and	GE-08						
Computational							
Physics							
Applied	Physics	4	3	1	0		
Dynamics	GE-09						
Quantum	Physics	4	3	1	0		
Information	GE-10						

Contents of the course and reference are enclosed.

Discipline Specific Core Course: Mechanics Credit: 04 (Theory: 02, Practical: 02)

THEORY: (Credit: 02; 30 Hours)

Vectors: Review of vector algebra. Scalar and vector product

(2 Hours)

Ordinary Differential Equations: First order homogeneous differential equations, second order homogeneous differential equation with constant coefficients

(4 Hours)

Brief review of Newton's laws of motion, dynamics of a system of particles, centre of mass, determination of centre of mass for continuous systems having spherical symmetry. Conservation of momentum and energy, work – energy theorem for conservative forces, force as a gradient of potential energy, angular momentum, torque, conservation of angular momentum

(9 Hours)

Idea of simple harmonic motion, differential equation of simple harmonic motion and its solution, kinetic energy and potential energy, total energy and their time average for a body executing simple harmonic motion

(4 Hours)

Newton's law of gravitation, motion of a particle in a central force field, Kepler's laws, weightlessness, geosynchronous orbit, basic idea of global positioning system

(4 Hours)

Elasticity: Concept of stress and strain, Hooke's law, elastic moduli, twisting torque on a wire, tensile strength, relation between elastic constants, Poisson's ratio, rigidity modulus (3 Hours)

Postulates of special theory of relativity, Lorentz transformation relations, length contraction, time dilation, relativistic transformation of velocity

(4 Hours)

References:

Essential Readings:

- 1) Schaum's Outline of Vector Analysis, 2nd Edn., Murray Spiegel, Seymour Lipschutz, Tata McGraw-Hill, (2009)
- 2) An Introduction to Mechanics (2/e), Daniel Kleppner and Robert Kolenkow, 2014, Cambridge University Press.
- **3)** Mechanics Berkeley Physics Course, Vol. 1, 2/e, Charles Kittel, et. al., 2017, McGraw Hill Education

4) Mechanics, D. S. Mathur and P. S. Hemne, 2012, S. Chand.

Additional Readings:

- 1) University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- 2) University Physics, H. D. Young and R. A. Freedman, 14/e, 2015, Pearson Education.
- 3) Fundamentals of Physics, Resnick, Halliday and Walker 10/e, 2013, Wiley.
- 4) Engineering Mechanics, Basudeb Bhattacharya, 2/e, 2015, Oxford University Press.

PRACTICAL (Credit: 02; 60 Hours)

Every student should perform at least 06 experiments from the following list.

- 1) Measurements of length (or diameter) using vernier calliper, screw gauge and travelling microscope.
- 2) Determination of height of a building using a sextant.
- **3**) Study of motion of the spring and calculate (a) spring constant and, (b) acceleration due to gravity (g)
- 4) Determination of moment of inertia of a flywheel.
- 5) Determination of Young's modulus of a wire by Optical Lever Method.
- 6) Determination of modulus of rigidity of a wire using Maxwell's needle.
- 7) Determination of elastic constants of a wire by Searle's method.
- 8) Determination of value of g using bar pendulum.
- 9) Determination of value of g using Kater's pendulum.

References:

- 1) Advanced practical physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- 2) Engineering practical physics, S. Panigrahi and B. Mallick, 2015, Cengage Learning India
- 3) Practical physics, G. L. Squires, 2015, 4/e, Cambridge University Press.
- 4) A text book of practical physics, I. Prakash and Ramakrishna, 11/e, 2011, Kitab Mahal.
- 5) B. Sc. practical physics, Geeta Sanon, R. Chand, 2016